تاثیر سطوح مختلف نانواکسید روی (ZnO NPs)بر شاخص های هماتولوژی ماهی کوی Cyprinus carpio))

نوع مقاله: پژوهشی

نویسندگان

1 گروه شیلات، دانشکده علوم و فنون دریایی،دانشگاه آزاد اسلامی، واحد تهران شمال

2 گروه شیلات،دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی، واحد تهران شمال

چکیده

روند صعودی مصرف نانو ذرات در صنعت،احتمال ذخیره ی آنها در اکوسیستم های آبی و به خطر افتادن حیات موجودات آبزی را افزایش داده است، لذا هدف این مطالعه، بررسی اثر سمی نانو ذره اکسید روی(0، 1، 2، 4 و 8 میلی گرم بر لیتر) به روش ساکن بر پارامترهای مشخص هماتولوژی ماهی کوی Cyprinus carpio))در یک دوره 2 و 10 روزه بود.اختلاف معنی داری در کاهش میزان هموگلوبین(Hb)19/0±3/7، تعداد گلبول های قرمز(RBC)03/0±41/1و سفید((WBC19/0±/1، هماتوکریت(Hct)66/0±22، حجم متوسط گلبول قرمز(Mean Corpuscular Volume)29/5±35/155 و مقدار وزن متوسط هموگلوبین در یک گلبول قرمز (Mean Corpuscular Hemoglobin)07/2±2/51(به جز دز 4 میلی گرم بر لیتر) در دوره ده روزه ی مورد بررسی در مقایسه با گروه شاهد ثبت شد(05/0p<). در مقابل غلظت متوسط هموگلوبین در گلبولهای قرمز (Mean Corpuscular Hemoglobin Concentration)23/0±4 در طول این بررسی افزایش یافته بود. نتایج حاصل حاکی از آن است که در محیط های آبی با غلظت های بالای ZnO NPs می تواند اثرات نامناسبی داشته و پارامترهای خونی ماهی کوی را دچار تغییرات شدید نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of nano-zinc oxide (ZnO NPs) on hematological indices of Koi fish (Cyprinus carpio)

نویسندگان [English]

  • M. Bakhshi 1
  • M. Kazemiyan 2
1 Dept. of Fisheries, Faculty of Marine Science and Technology, Islamic Azad University, Tehran North Branch
2 Dept. of Fisheries, Faculty of Marine Science and Technology, Islamic Azad University, Tehran North Branch
چکیده [English]

The increased industrial applications of nanoparticles increase the possibility their deposition into aquatic ecosystems and thereby threatening the aquatic life. Therefore, this study aimed to provide the toxicological effects of ZnO NPs (0, 1,2,4,8 mg.L-1) on certain hematological indices of Koi fish for a period of  2 and 10 days, under static bioassay. A significant decrease in hemoglobin (Hb) content 7.3±0.19, red blood cell (RBC) count 1.41±0.03, hematocrit (Hct) value 22±0.66, mean cellular volume (MCV) 155.35±5.29 and mean cellular hemoglobin (MCH) 51.2±2.07 (except on 4 mg.L-1dose) was noticed throughout the study period of 10 days when compared to control groups. In contrast, mean cellular hemoglobin concentration (MCHC) levels 4±0.23 were found to increase during the study period.Our results demonstrate that high ZnO NPs concentrations in the aquatic environment may have adverse effects and cause acute changes on hematological parameters of Koi fish.

کلیدواژه‌ها [English]

  • Nano Zinc Oxide
  • Hematological indices
  • Koi fish
شکوری،م.، ابدالی،س.، نگارستان،ح. و حلاجیان، ع. 1391 . بررسی اثر سمیت روی بر برخی از پارامترهای  بیوشیمیایی خون بچه ماهی فیتوفاگ Hypophthalmichthys molitrix. مجله پژوهش های علوم و فنون دریایی، 7(3): 86- 71.

 

رزم آرا،پ.، پیکان حیرتی،ف. و درافشان،س.1393. اثرنانوذرات نقره بر برخی شاخص های خون شناسی  گربه ماهی رنگین کمان. مجله سلول و بافت،5(3): 272-263.

 

Alkaladi,A., El-Deen, N. A.M., Afifi, M.& Abu Zinadah, O. A. 2015. biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudi journal Biology sciences, 22:556-563.   

 

Banaee, M., Mirvagefei, A.R., Rafei, G.R.& Majazi Amiri, B. 2008. Effect of sub-lethal Diazinon concentration on blood plasma biochemistry. International Journal of Environmental Research, 2(2): 189- 198.

 

Blaise, C., Gagne F., Fe´ rard, J.F& Eullaffroy, P.  2008. Ecotoxicity of selected nanomaterials to aquatic organisms. Environmental Toxicology and Chemistry, 223: 591–598.

 

Blaxhall, P.C. & Daisley, K.W. 1973. Routine hematological methods for use with fish blood. Journal of Fish Biology, 5:771-781.

 

Christine, C. & Gokhale, K.S. 2000. Selected oxidative enzymes and histopathological changes in the gills    of Cyprinus carpio and Oreochromis mossambicus cultured in secondary sewage effluent. Water Research, 34(11):2997–3004.

 

Gail, M. D., Daniel, S., Jonathan, T. H. &Howard, C. B. 1999. Alterations inphysiological parameters of Rainbow trout(Oncorhynchus mykiss) with exposure tocopper and copper/zinc mixtures. Journal ofecotoxicology and environmental safety, 42:253–264.

 

Gail, N., van Vuren, J.H.J. & Preez, H.H. 1995. Effect of copper on the differential white blood cell coints of the Mozambique tilapia (Oreochromis mossambicus). Comparative Biochemistry and Physiology, 111C: 381-388.

 

George, S., Gardner, H., Seng, E.K., Chang, H., Wang, C., Fang,C.S.Y., Richards, M., Valiyaveettil, S. &Chan, W.K. 2014. Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafishembryos. Environmental Science andTechnology, 48(11) 6374–6382.

 

Hao, L., Chen, L., Hao, J.& Zhong, N. 2013. Bioaccumulation and sub-acute toxicity of Zinc Oxide nanoparticles in juvenile Carp (Cyprinus Carpio). Ecotoxicology and environmental safety,91:52-60.

 

Hoet,P.H.M, Irene Brüske-Hohlfeld, B.H.& Salata, O.V. 2004. Nanoparticles – known and unknown health risks. Journal of Nanobiotechnology, 2:12.

 

Ishikawa, N.M., Ranzani-Paiva, M.J.T., Lombardi, J.V., Ferreira,C.M.2007. Haematological parameters in Nile Tilapia Oreochromis niloticus exposed to sublethal concentrationsof mercury. Brazilian Journal of Zoology, 50(4):619-626.

 

James, R. & Sampath, K. 1999. Effect of the ion-exchanging agent, Zeolite, on reduction of cadmium toxicity: an experimental study on growth and elemental uptake in Heteropneustesfossilis (Bloch). Journal of Aquaculture in the Tropics, 62: 222-229.

 

Jee, J.H., Masroor, F.& Kang, J.C. 2005. Responses of cypermethrin-induced stress in hematological parameters of Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquaculture Research, 36: 898-905.

 

Johansson-Sjobeck, M. & Larsson, A. 1979. Effects of inorganic lead on delta-aminolevulinic dehydrates activity and hematological variables in the rainbow trout, Salmo gairdneri. Archives of Environmental Contamination and Toxicology, 8: 419-431.

 

Karthikeyeni, S., Vijayakumar, T.S., Vasanth, S. & Ganesh, A.2013. Biosynthesis of Iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis  mossambicus, Journal Academic Industrial, 1(10): 645-649.

 

Kasemets, K., Lvask, A., Dubourguier, H.C. & Kahru, A. 2009. Toxicity of nanoparticles of ZnO, CuO and 

   TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23(6):1116-1122.

 

Kaya, H., Aydin, F., Gurkan, M., Yilmaz, S., Ates, M., Demir, V. & Arslan, Z. 2016. Acomparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters.Chemosphere, 144:571-582.

 

Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy,R.D., Lyon, D.Y., Mahendra, S.,McLaughlin, M.J. & Lead, J.R. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27: 9.1825–1851.

 

Kosai, P., Jiraungkoorskul, W., Thammasunthorn, T.& Jiraungkoorskul, K. 2009. Reduction of copper-induced histopathological alterations by calcium exposure in Nile Tilapia (Oreochromis niloticus). Toxicology Mechanisms and Methods, 19: 461-467.

 

Little, E.E., Fairchild, J.F.&.  DeLonay, A.J. 1993. Behavioral methods for assessing the impacts of contaminants on early life stage fishes. In American Fisheries Society Symposium 14 water Quality andthe Early Life Stages of Fishes. L. Fuiman (ed). America Fisheries Society. Bethesda.

 

Liu, J., Fan, D., Wang, L., Shi, L., Ding, J., Chen, Y. & Shen, S. 2014. Effects OF ZnO, CuO, Au, and TiO2 Nanoparticles on Daphnia magna and early Life stages of Zebrafish Danio rerio. Environmental Protection Engineering, 40: 140-149.

 

Ma, H., Williams, P.L. & Diamond, S.A. 2013. Ecotoxicity of manufactured ZnONPs – A Review.Environmental Pollution, 172: 76-85.

 

Maheswaran, R., Devapanl, A., Muralidharan, S., Velmurugan, B. & Ignaeimuthu, S. 2008.  Haematological studies of fresh water fish, Clarias batradrus (L) exposed to mercuric chloride. International Journal of Integrative Biology, 2(1): 49-54.

 

Mitchelmore, C.L.& Chipman, J.K. 1998. DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutation Research, 399: 135-147.

 

Nelson, D.A. & Morris, M. W. 1989. Basic methodology hematology &coagulation. Part IV. Saunders Company. Philadelphia, USA.

 

Orojali, M., Paykan Heyrati, F., Mahboobi Soofiani,N. & Dorafshan, S. 2013. Cadmium sub-lethal concentrationeffects on the haematological parameters of starlet(Acipenser ruthenus).Journal Fish Scientific Technology, 2(2):11-22.

 

Panigrahi, A.K. & Misra, B.N. 1987. Toxicological effects of mercury on a fresh waterfish Anabas Scandens, CUV and VAL and their ecological implications. EnvironmentPollution, 16: 31-39.

 

Petersen, E.J. & Henry, T.B. 2012. Methodological considerations for testing the ecotoxicity of carbon Nano tubes and fullerenes: review. Environmental Toxicology and Chemistry, 31 (1): 60–72.

 

Raina,S.& Sachar A. 2014. Effect of heavy metal, zinc and carbamatepesticide, sevin on haematologicalparameters of fish, Labeo Boga. International Journal of Innovative Research in Science,Engineering and Technology,3(5):12636- 12644.

 

Rajkumar, K. S., Kanipandian, N. & Thirumurugan, R., 2015.Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Apply Nanoscience, 6:19–29.

 

Remya, A.S., Ramesh,.M., Saravanan, M.,Poopal,  R.K., Bharathi, S. & Nataraj, D. 2015.  Iron oxide nanoparticles to an Indian major Carp, Labeo rohita: Impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. Journal of King Saudi University, 27: 151–160.

 

Sadiq Bukhari, A., Syed Mohamed, H.E., Broos, K.V., Stalin, A., Singhal, R.K. &Venubabu, P. 2012. Histological variations in liver of freshwater fish Oreochromis mossambicus exposed to 60Co gamma, ofIrradiation. Journal of Environmental Radioactivity, 113: 57-62.

 

Stentiford, G.D., Longshaw, M., Lyons, B.P., Jones, G., Green, M. & Feist, S.W. 2003.Histophathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Marine 

Environmental Research, 55(2): 137-159.

 

Vaseem, H. & Banerjee, T.K. 2012.Toxicity analysis of effluent released duringrecovery of metals from polymetallic seanodules using fishhaematological parameters. TheFunctioning of Ecosystem. Edition: 1st,Chapter: 13, Publisher Intech. Rijeka,Croatia.

 

Wells, R.M.G., Baldwin,J.1990. Oxygen transport potential in tropical reef fish with special referenceto blood viscosity and haematocrit. Journal of Experimental Marine Biology and Ecology, 141: 131-142.

 

Wepener, V. 1990. The effect of heavy metals at different pH on the blood physiology and metabolic

enzymes in Tilupiu spurrmunii (Cichlidae). M.Sc.-Thesis, Rand Afrikaans University. South Africa.

 

Zhang, X.D., Wu, H.Y., Wu, D., Wang, Y.Y., Chang, J.H., Zhai, Z.B., Meng, A.M., Liu, P.X., Zhang, L.A. & Fan, F.Y. 2010. Toxicologic effects of gold nanoparticles in vivo by different administration routs. International Journal of Nanomedicine, 5:771-781.

 

Zorriehzahra, M.J., Hassan, M.D., Gholizadeh,   M. &Saidi, A.A. 2010. Study of some hematological and biochemical parameters of Rainbow trout (Oncorhynchus mykiss) fry in western part of Mazandaran province, Iran. Iranian Journal of Fisheries Sciences, 9(1): 185-198.